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Solving Microstrip Discontinuities by the
Measured Equation of Invariance

Mark D. Prouty,Member, IEEE Kenneth K. Mei,Fellow, IEEE, Steven E. SchwarZellow, IEEE,
Rafael PousMember, IEEE,and Yau-wu Liu

Abstract—The measured equation of invariance (MEI) is a computation. For example, no attempt was made to speed
newly developed computational method which allows finite- yp the Sommerfeld’s integrals by approximations. Thus, the
difference (FD) or finite-element (FE) mesh to be terminated very - fficiency of the MEI method as compared to other methods
closely to objects of interest [1]. In this paper, the authors show .
how the MEI method may be applied to microstrip antennas 'S not_ addressed. However, the lean mesh coverage and_ the
and discontinuity problems. The authors demonstrate its use in Sparsity of the matrix of the MEI method is a feature of special
general full-wave three-dimensional (3-D) microstrip problems, interest to computational electromagnetics. It is demonstrated
and give results for open-ended microstrip lines and microstrip that the MEI gives similar results as the method of moments

bends. Sufficient details are included so that a well-versed reader (MoM) for infinite microstrips, open-ended microstrip lines
may reproduce the authors’ results with much less effort. . . ’ !
and microstrip bends.

. INTRODUCTION Il. FINITE-DIFFERENCE FORMULATION

T HE MEASURED equation of invariance (MEI) method is  The geometry of this investigation has been limited to planar
a newly developed computation technique, which allowgea| strips on top of a flat grounded dielectric substrate.

finite-difference (FD) or finite-element (FE) meshes t0 Bgpe meshes are rectangular in shape. Due to the planar metal
terminated very closely to the objects of interest [1]. Since ifg,nfiguration, the currents will be limited to the-plane, and
debut in 1992 [2], the method has been tested, criticized, § normal of the substrate is in thedirection. The most
improved by numerous computer electromagnetists [3]-[14lynyenient formulation of the Maxwell’'s equations for such a

The remarkable feature of this method is its capability 9 cture is to use the vector and scalar potentials
truncate the mesh almost on to the object surface and still leave

the sparsity of the FD/FE equations intact. In earlier work, the B=VxA 1)
authors applied this method to two-dimensional (2-D) scatter- E=—jwA-Vo 2)
ing from general object shapes and three-dimensional (3-’231

scattering from sheet scatterers [1], to quasi-static microstM1€re

structures [14], and to discontinuities in suspended striplines V.A=—jwued (Lorenz gauge) A3)

[15], [16]. (V2+kHA=—pJ (4)
The purpose of this paper is to demonstrate that the MEI ) ) TTH

method may be applied to microstrip structures. Since this (V24 k7)) =~p/e (5)

is the first time the MEI is being applied to a comple

3-D problem, and a new FD mesh strategy is used on the ~
vector and scalar potentials, the computer code is devel- V.-J=—jwp. (6)
oped in a conservative way so as to minimize computationgl

uncertainties, which might contribute to the failure of th e boundary conditions on the interface are
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Fig. 1. Unit cell for the staggered mesh. y Jwdy DX
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vector potential also containsgacomponent. The solution of (14)
the Maxwell’'s equation is now reduced to that of solving the
three scalar wave equations where
plidk) — _ L
(V24 E5A; =0 (10) Jwpe
A;i,j,k) _A;i—l,j,k) Aéi,j,k) _Aéi,j—l,k)
wherei = z, y, or z. The equations are decoupled except DX + DY
at the interface. The FD equation of (10) is well known, but A5 _ yligk=1)
the key to a successful development of the FD equation is 4+ o (15)
the node assignment for each vector potential component. The Dz ]

proper way to discretize the components 4fis to stagger . _ '
the locations at which the different components are calculatd¥l. Equation on Dielectric Interface

Like Yee's lattice in time domain [17], such a node distribution Sojutions of Maxwell's equations written in terms of vector
provides a staggered node distribution for the components g scalar potentials are only valid in homogeneous media.
the electric and magnetic field. A unit cell of the staggeregdquations on the interface are obtained from the continuity
mesh is shown in Fig. 1. For convenience, the superscriptse@nditions of (7)—(9). The continuity of the scalar potential

the vector potential are integers representing the discretizatignthe interface of Fig. 2 is obtained by equating the scalar
sizeDX, DY, DZ in thex-, y-, andz-directions respectively. potential just above the interface
The relations between the superscript and the real coordinate

locations of the nodes are Sy = 0+)
-1 A;O,O,O) _ Ag}l,O,O) AéO,O,O) _ASO,O,—I)
oy JAelli+ DX, DY, ) D] Tjens| DX Dz
AR = S A - DX, (j+ 3)DY,k-DZ) 5. (11) ©00)
A.[i-DX,j DY, (k+1)DZ] 2(AXY — A.(y=0))
2 + DY (16)

A. Interior Equations in Uniform Medium and that just below the interface

Based on the previously described node locations of the B
vector potential components, the FD equationsAgf from (y=07)

the standard central difference formulas can be obtained. A —1 [A000) _ 10,00 4(0.00) _ 4(0,0.-1)
typical equation forA, is = jopen DX - D7
_ (0,—1,0)
Dz DY[DXQ + vz T g F }Aw DZDY DY
' AGHEIR) L AT n AGIER) 4 (I 71R) in order to solve for4, (y = 0). Then
(DX)? (DY')? _9
- - P00 — =
AP 4 AGIRD m jwi(eo + €r)
= N—Téz’J’k)- (12) (0,0,0) (—1,0,0) (0,0,0) (0,0,—1)
(DZ)? Ay — Ay +Az” - A
DX Dz
Note that the location of, and £, are the same ad,, and A(0.00) _ 4(0,-1,0)
HH s offset toH., (i, j+ 2L, k+L£Z) as shown in Fig. 1. + oy Y ] (18)
The equation for the components of the magnetic and electric
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Fig. 2. Values used to find scalar potential on an interface.

which is equivalent to using the average value of the per-

mittivity at the interface. Since this microstrip is parallel t(gggljn?a.ar;ocatlons of the vector potential components in relation to metal

the zz-plane, it is prudent to place the metal surface at a
layer where the nodes ol, and A, are located. The node

A H, A4 H A

x ¥ x ¥ x

o—A—0——A—0
I I
A—H—A—H;—A,
I TR I B
O—A—0—A—0
[ O R B
Ax——H‘—y Ax—Hy—Ax

0—A—0—A4~—0

o 4 o 4 o

locations ofA,, A., and the metal boundaries, are shown in H © H © n O
Fig. 3, where the 0’s indication the location @ The node A—H—A—H=—A_  H,

distribution on the layer aDY /2 above or below the metal | N I
layer is shown in Fig. 4, where the 0's are for the magnetic H—O—H—O0—H, O

scalar potentials if the magnetic current or slot excitation are | | | |
used. The equation on the metal surface is then /llx Ilt—/llx_H:—Tx H,
: H—0— —‘% —H, O

aP | 1 1 |

0,0,0) _ N
EQOD = —jwA, - 5z A H A—H—A—H—A H, A"
0,0,0 0,0,1
= —jwA000) 4 (2009 — 90L) H O H O H O H O
T DX z
. 2

= —jwAl00) 4 2 A4 H, A H A H A H

Jwpleo +€R)
A;I,O,O) + A;—I,O,O) _ 2A§907070)
DX -DX

Fig. 4. Locations of the vector potential components one half division above
the metal surface.

1

AL00) | 400,21 _ 4(1,0-1) _ 4(0,0,0) The continuity of the tangential magnetic field at the inter-
DX . D7 ] face is obtained by the integral
4 Aéof_lfo) + Aél7070) _ Aélf_lfo) _ Aéo7070)] } /,LféjH m—jW/SD % =0. (21)
DX -DY
Let the loop integral be on they- and zy-plane, respectively,
=0 00 (19) o obtain
(07070) — —_
B = —jwds — 2 2 2 o 000
- 4000) ) DX2  DY? D2z? ae|t=
= gAY - -
J jwpleo — ) ~ Agl,o,o) + Ai 1,0,0) . A;o,l,o) + A;O’ 1,0)
{ Ago,o,l) —i—AiO’O’_l) _ 2A§0’0’0)] DX2 DY?2
' DZ . DZ (07071) (0707_1)
AL + Az
(1,0,0) (—1,0,0) (—1,0,1) (0,0,0) + 2 =0 (22)
A7 Ay T Ay T Ay Dz
DX -DZ and
0,—1,0 0,0,1 0,—1,1 0,0,0
O I oV Vi i 2 2 2 5 ) oo
DZ.-DY DXx2 " py2 " Dz2 ave |41z
=0. (20) B ALOO) _ 4(=1,0,0) . AL | 4(0,-1,0)
DXx? DYy?
The metal edges and corners are placed in the meshed region in A0.0.) I 4(00.-1)
Fig. 3, where the singularities of the edge and corner electric + = DZ; } =0 (23)
fields are nicely avoided.
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where

Ry = wp > (24)

An interesting case is the equation fdy, just above and
below the interface. Even though they are interior nodes, they
are only a half discretization away from the interface, and the
central FD equation would require a node in the other medium.
The integral of (21) in therz-plane just above and below the
interface gives the following formulas, respectively,

2 2 2 20
—k2 1 4(0,0,0)
[ 0t pxz T D72 +DY2< +€R+50>} v

Fig. 5. Geometry of boundary nodes of a 3-D mesh.

The G(7/«',7") is the dyadic Green’'s function for the

0,0,1 1,0,0 1,0,0 ~1,0,0 = = : :
B APOY 4 450 n AP0 4 A0 ground plane with dielectric substratejs the surface of the
DZz? DX? microstrip or antenna, and, is the metron ors.
AOLO) | 25y 4(0.-10) For eachk € {1,2,---,M}, the values ofA®) may be
Y coter 20 i i i i i
5 + <1 — ) inserted into (27) generating a linear system which may be
DYy €oter used to find the MEI coefficients;. As in the static case

<A(_1’0’0) _ 4000  4(0,0-1) A§0’0’0)> described earlier, the value is arbitrary, setigo— —1
. T T + Z Z — 0
DX -DY DZ.-DY aga)A&k) (fl) + aga)A((Xk) (7_’2) R ag\‘f)a&k) (7_’1\’)

(25) =AW(r),  ke{1,2,---,M}, M>N. (29)
and This is done for each node on the mesh surface, edge or
2 2 2 2¢eq corner, where the FD equations fail.
_k2 E_R 1 A’(07070) ’
[ 0<50 o2 D T ovE\' e )|
A0:0.1) I A00-1)  4(1,0,0) I A(—L10.0) B. The Metrons
- < D72 - DX2 In the case of a 2-D problem the choice of a metron set,
(0-1,0) 0 0.1,0) though arbitrary, is quite simple, such as the lowest order terms
Ay T+ AT (1o 2e9 of any orthogonal set of functions. In a 3-D case, where a
DY? eo+er 2-D surface may assume quite complicated shapes, an intuitive
(0,1,0) (=1,1,0) (0,1,0) (0,1,—1) selection of metrons may not be available. To relieve the code
[ As —As + Az — Az —0. developer the burden of choosing particular metron sets, the
DX -DY Dz -DY authors have decided to use Hertzian dipoles at the nodes as

(26) metrons. One-directed Hertzian dipole is placed at one node
o ) ) _location of A, as a metron forl,, (7). Therefore, we shall have
These pseudo-interior equations are functions of the mediyyp metrons, and/ is the number of node points of,, on the

of the other side. metal surface wher&/ >> N. A least square fit is used to find
the NV coefficients in (27). Surprisingly, ali4 equations are

lIl. I MPLEMENTATION OF THE MEI METHOD very nearly satisfied. Maximum residues in (27) are about 1%

for every node in the mesh and for every measuring function.

A. Linear Equations The least-square procedure is very much like an integration

The MEI method to terminate the mesh, or to write locdlfocess in (28). The rule is that every node point/of on
linear equations at the mesh boundary is described. Figthe metal should be included.
shows three types of node configuration for a cubic mesh
enclosure. Therefore, the mesh boundary equations are  C. The Green’s Functions

N The Green'’s function in (28) is a dyadic of the form

Z a; Ao (7;) = 0, a=uz,y, Orz (27) AT O O

=0 G=|Az Ay A ). (30)
whereN = 2,3, 4 for corner, edge, and surface nodes, respec- o o 0O A

tively. Note that the mesh boundary equations are derived for . . . ,
each wave equation of the componentsAfso there is no The components in (30) are given in terms of Sommerfeld’s

coupling between them in (27). There should be a differemtegrals' They are the solutions to the Helmholtz equation
set ofq; for every A,,. in regions of a grounded planar dielectric substrate shown

The measuring functions are in Fig. 6. An excellent reference to those is [18]. The su-
perscript in (30) denotes the direction of the source and
AR (F) = /Q(;/xg,:/) - Te(@, 2)ds (28) the subscript denotes that of the potential. The integrals are

s shown in (31)—(33) at the bottom of the following page,
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Fig. 6. Geometry for finding the Sommerfeld integrals of a grounded di- (') ! CI) o

electric substrate.
Fig. 7. Mesh geometry of an infinite line using MEI.

where Drg = uy COSh(U,lH) + ug Sinh(ulH), and Dy =

e1ug cosh(ug H) + eoug sinh(ug H). The symmetry of the

media gives the following relations: method can model transmission structures. The geometry for

a continuous line is shown in Fig. 7. The FD equation inside
A% (z,y,2) = AZ(—2z,y,2) (34) the mesh, and the MEI equations at most of the edges of the
Az, y,2) = Ay (=2,9,2) | mesh, have been derived in the previous section. However,

The integrations of the Green’s functions are time consumi mething else should be done at the input and output planes.

because the integrands are slowly decaying oscillating funghice we are looking for a wave which propagates with a

tions. Techniques for performing such integrations are Out"néadependence of the foer(_jsz)’.Fhls condition can be
in [18]. enforced at the output plane, by writing

1/)0 = exp(—jﬁDZ) . T/)l. (35)

The input plane now forms the excitation for the problem.

Using the above p_rocedures, the FD_equat!ons are develoﬁ%diterative method may be used to derive the excitation. The
and truncated specifically for planar-microstrip-type problem st step is to specifyd. = 1 on the metal and zero off the

All one needs to do is to use a sparse matrix subroutine to so Qtal at the input plane. The system of equations is solved

for the vector potentials, from which the fields and induc he values calculated at the output plane may be used as the
current densities can be obtained. The advantage offered byﬁlg

o . f excitation values at the input plane and the calculation is
MEI procedure is its capability to fruncate the mesh very CIO?Speated. Because the higher order modes, which are excited,

to the object surface—in this cases, the microstrip itself. In tr&%cay in thes-direction. the solution should stabilize to a
horizontal direction the mesh is terminated only two discretiza— minant mode after a’ few iterations. which it does. Note

tion steps away from the edges of the metal strip. In the vertiqﬂ t the MEI| coefficients. or all the elements of the matrix
directiqn, the mesh is. terminatgd two discretization stgps abor\é?nain unchanged at ea'ch iteration. '
the strip and three discretization steps below the strip. Another issue in modeling an infinite line is the effect of the
o presence of the metrons outside the mesh. Metrons are placed
A. Infinite Structures outside of the mesh where the effect is seen to be negligible to
A microstrip line extending to infinity is a basic problemcompare to the effect of closer current effects. In other words,
for numerical computation because it will tell us how well théhe metal effect is deemed to continue to some distance away

IV. NUMERICAL RESULTS

* sinh(ui (y + H))

1
= Jo(k,p) dk,, <0
az={ /0 " DT]}D)] [(0( pp); ’ y< (31)
z “° sinh[(u exp|(—uoy
- Jo(k,p)k, dk,, =0
27r/0 Drp olkpp)k, dk, vz
oo _ : H H
_C;w (e1 — €v) smh[l()m Ngosh[(“l(y T g (ko2 d, y<0
AY — T Jo_ ) TE + D1nm (32)
= _cos¢ (e1 — €o) sinh(u; H ) cosh(uy H) exp[(—uoy)] Ty (k,p)k2 ds >0
2 Jo DrpDrym AP e =
1 [~ =2 H
o Acosl};uo(y + )Jo(k,;p)/fp dk,, y<0
Ay=q7 P A (uon? (:ngh( H) — wy sinh(ppH)) expluoy] %)
2170 hE L pE Doy Jo(kpp)kp dkyp, y=0

2 Jo  wo Drm
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Fig. 9. Effective dielectric constant for microstrip lines. Relative dielectric

Fig. 8. Current along an infinite suspended stfp.= 1 mm, frequency permittivity is 12.9, and substrate thickness is 1 mmyy = (3/ko)?. The

= 12 GHz. dotted line is from [20].
3.15 200
from each side of the mesh, and Hertzian dipole metrons are y . v
- 31 o 1150
place at each node on the metal. Then, the MEI coefficients R D :
are found by a least-square-fitting method. Through numerical 3% | TN PN ) I
experimentation, it has been found that placing metrons outt§ 3 { Y R '1 so g
a distance equal to abolH{, whereH is the thickness of the En 295 | ; 1, &
substrate, produces good results. The magnitude and phase=of | ' : : A : 2
the total longitudinal current along a suspended strip is shown S S . B0z
in Fig. 8. A tiny standing wave is seen, representing the size 28t N AR i
of the error in the calculation. 28+ L aso
For a microstrip where the substrate is not air, the propa- ’ ! § 200

gation constant is unknown. However, it may be found by the
same iterative process used to find the excitation values on R o _
the input plane. First, a starting value may be found fom {610, Cuert feng e pinie mispen e, Frequeney i 12 Gtz
the quasi-static approximation, and the initial excitatiomof

as used earlier. Then, after each solution, a new propagation
constant is calculated from the slope of the phase along the
transmission line. The new value ¢f along with the new
excitation values are inserted into the problem and resolved. SW
The process is repeated until the propagation approaches a
unimodal form

A(.’L’,y, Z) = A(.’L’,y) eXp(_jﬁz)' (36) L

The MEI coefficients stay the same in each iteration, but tf@- 11. Mesh geometry of an open-end microstiip. = Gk, L = 50%,

. =6.5h,0.01 < kgh < 0.06, whereh is the mesh spacind(not to scale).
equations at the output plane (35) do change because of the
changing3. In addition, it is found that the best results argor the propagation constant for an infinite line is the spectral-
obtained when the mesh is extended all the way to the grouémain method [22]. The 3-D approach is used to test how
plane. well the MEI method models infinite structures.

Results using this approach are shown in Fig. 9. The lon-

gitudinal current densities, magnitude, and phase of the sagiemicrostrip Discontinuities

line of Fig. 7 with a dielectric layer of, = 12.9 at 12 GHz are Open End: The simplest microwave discontinuity is the

shown in Fig. 10. For this inhomogeneous case, the solution N o .
is not quite as accurate as in the homogeneous case. ?ﬁ n end, shown in Fig. 11. The excitation used at the input

magnitude of the current decreases as it propagates, in 0 %ﬂis'sartgeefg;[ggtg tﬁta %n ér:]ﬂg'rfg Imgi:'r&ie Iglr?:irr]c?tr;lj;rt)e
words, the propagation constant has a small imaginary p b ! but p

This error appears due to numerical inaccuracies in the FD 4N _ced some dlst_ance away from the open end. Experience
Indicates that a distance of abat®f works well.

MEI equations. It becomes smaller as the mesh size is reduce n order to extract the reflection coefficient, the current on
The same numerical phenomenon has been observed Wher}rt1eeline must be decomposed into the sum (’)f a forward and
finite-difference time-domain (FDTD) method is used [21].

Actually using this 3-D approach to calculate what is, in facﬁ reflected wave

a 2-D problem is overkill. A more common method to solve J(Z) = AT exp(-T'Z) — A" exp(I'Z). (37)

Distance along line
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Frequency (GHz) Fig. 13. Mesh geometry of a microstrip bentd/ = 4h, L = 50h,
H = 4.5h,0.01 < kgh < 0.08, whereh is the mesh spacing.
Frequency (GHz)
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0 . . . . .
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Fig. 12. Lost power andS;; of the microstrip open end. The relative Frequency (GHz)

permittivity is 9.9, substrate thickness is 0.06 cm, strip width is 0.06 cm.
The solid lines are results using the MEI, and the points are from [23].  Fig. 14. S-parameters of the microstrip bend. Relative permittivity of sub-
strate is 9.9. Strip width and substrate thickness both are 0.06 cm. Solid line

. o . is by MEI, point fi 23].
The value ofl" is found from the infinite line problem with the oy points are from [23]

same mesh size. The magnitude4f and A~ may be found
by equating the calculated current on the line to the form of
(37). The reflection coefficient is

S =A"/AT. (38)

Results for the reflection coefficient are given in Fig. 12. The
top view of the mesh is shown in Fig. 11 except thas not in
scale. The mesh extenda above andl/ below the interface. Z-direction
The calculated results of Fig. 12 agree well with those of [30].
Microstrip Bend: The geometry and mesh of a microstrip
bend is shown in Fig. 13. The mesh is extende@icabove
and 3h below the interface. Metron currents are placed up to
a distance of 100 mesh units from the bend. Good agreement
of the S-parameters with earlier calculations [30] is shown in
Fig. 14. The power radiated is found from

Praa =1 —1S11]* = |S12)*. (39)

The actual magnitude of the current density over the strip f§g: 15. Current densities on the microstrip bend of Fig. 13. The frequency
. . . . . . | GHz.

shown in Fig. 15. The standing wave at the input side is cIearfy

seen, as is the characteristic profile of the current densities

traversing the microstrip. the interface. The current densities on the stub are shown

Microstrip Stub: Another example in the literature is thein Fig. 17. The results contain all the features one would

analysis of a microstrip stub, shown in Fig. 16. The mestxpect from the current densities in a microstrip, such as high-
is shown in scale except for the length along the strip. Thengitudinal-current densities along the metal edge, standing
mesh actually extends 50 points in each direction. In thveave on the input side of the strip, small transverse current,
vertical direction, the mesh extendé above and3h below etc. Fig. 18 shows th&-parameters and total scattered power.
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- ——

T

Fig. 16. Mesh geometry of a microstrip stub. Mesh is shown to scale, excéﬁt

V. CONCLUSION

The authors have shown that the MEI method can be
applied to 3-D planar microstrip structures. This method has
successfully truncated the FD mesh very close to the microstrip
surface without disturbing the sparsity of the matrix so that
the size of the problem is reduced to within the limits of a
personal computer. This paper is just a demonstration of the
validity of the MEI method. The real value of the MEI method
its potential of tackling large problems such as filters,

for the length along the input and output. The mesh actually extends 50 poiaguplers, and antenna arrays. Improvements of the existing

in each direction.

X-direction

Fig. 17. Current on a stub discontinuity. Frequency is 10.25 GHz.
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Fig. 18. S-parameters of the microstrip stub of Fig. 16 = 10.65,
L=28mm,W =14 mm, H = 1.27 mm. Dashed line is from [24].

codes regarding more complex geometry and speeding up of
the Sommerfeld’'s integrals have to be done before one can
economically solve large problems.

The MEI method has a big advantage in its simplicity. It
actually simplifies the mesh generation for FD/FE problems
because the mesh does not need to extend very far from the
body surface. In this work, a variety of microstrip discontinuity
problems with the same code have been analyzed. Little setup
time is needed to switch from one to the other. All that must
be done to specify the problem is to describe the location of
the metal nodes and the form of excitation.
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