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Abstract—The measured equation of invariance (MEI) is a
newly developed computational method which allows finite-
difference (FD) or finite-element (FE) mesh to be terminated very
closely to objects of interest [1]. In this paper, the authors show
how the MEI method may be applied to microstrip antennas
and discontinuity problems. The authors demonstrate its use in
general full-wave three-dimensional (3-D) microstrip problems,
and give results for open-ended microstrip lines and microstrip
bends. Sufficient details are included so that a well-versed reader
may reproduce the authors’ results with much less effort.

I. INTRODUCTION

T HE MEASURED equation of invariance (MEI) method is
a newly developed computation technique, which allows

finite-difference (FD) or finite-element (FE) meshes to be
terminated very closely to the objects of interest [1]. Since its
debut in 1992 [2], the method has been tested, criticized, or
improved by numerous computer electromagnetists [3]–[14].
The remarkable feature of this method is its capability to
truncate the mesh almost on to the object surface and still leave
the sparsity of the FD/FE equations intact. In earlier work, the
authors applied this method to two-dimensional (2-D) scatter-
ing from general object shapes and three-dimensional (3-D)
scattering from sheet scatterers [1], to quasi-static microstrip
structures [14], and to discontinuities in suspended striplines
[15], [16].

The purpose of this paper is to demonstrate that the MEI
method may be applied to microstrip structures. Since this
is the first time the MEI is being applied to a complex
3-D problem, and a new FD mesh strategy is used on the
vector and scalar potentials, the computer code is devel-
oped in a conservative way so as to minimize computational
uncertainties, which might contribute to the failure of the
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computation. For example, no attempt was made to speed
up the Sommerfeld’s integrals by approximations. Thus, the
efficiency of the MEI method as compared to other methods
is not addressed. However, the lean mesh coverage and the
sparsity of the matrix of the MEI method is a feature of special
interest to computational electromagnetics. It is demonstrated
that the MEI gives similar results as the method of moments
(MoM) for infinite microstrips, open-ended microstrip lines,
and microstrip bends.

II. FINITE-DIFFERENCE FORMULATION

The geometry of this investigation has been limited to planar
metal strips on top of a flat grounded dielectric substrate.
The meshes are rectangular in shape. Due to the planar metal
configuration, the currents will be limited to the-plane, and
the normal of the substrate is in the-direction. The most
convenient formulation of the Maxwell’s equations for such a
structure is to use the vector and scalar potentials

(1)

(2)

where

(Lorenz gauge) (3)

(4)

(5)

and

(6)

The boundary conditions on the interface are

(7)

and

(8)

where is the normal of the surface, and the subscripts
represent the two sides of the interface. when the node
is not on the metal strip. is an unknown when the node
is on the metal, where (7) should be dropped and (8) should
be replaced by

(9)

Even though the current in this problem is in the-plane
only, because of the presence of the dielectric substrate, the
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Fig. 1. Unit cell for the staggered mesh.

vector potential also contains a-component. The solution of
the Maxwell’s equation is now reduced to that of solving the
three scalar wave equations

(10)

where , , or . The equations are decoupled except
at the interface. The FD equation of (10) is well known, but
the key to a successful development of the FD equation is
the node assignment for each vector potential component. The
proper way to discretize the components ofis to stagger
the locations at which the different components are calculated.
Like Yee’s lattice in time domain [17], such a node distribution
provides a staggered node distribution for the components of
the electric and magnetic field. A unit cell of the staggered
mesh is shown in Fig. 1. For convenience, the superscripts of
the vector potential are integers representing the discretization
size , , in the -, -, and -directions respectively.
The relations between the superscript and the real coordinate
locations of the nodes are

(11)

A. Interior Equations in Uniform Medium

Based on the previously described node locations of the
vector potential components, the FD equations of from
the standard central difference formulas can be obtained. A
typical equation for is

(12)

Note that the location of and are the same as , and
is offset to , as shown in Fig. 1.

The equation for the components of the magnetic and electric

fields are, respectively,

(13)

(14)

where

(15)

B. Equation on Dielectric Interface

Solutions of Maxwell’s equations written in terms of vector
and scalar potentials are only valid in homogeneous media.
Equations on the interface are obtained from the continuity
conditions of (7)–(9). The continuity of the scalar potential
at the interface of Fig. 2 is obtained by equating the scalar
potential just above the interface

(16)

and that just below the interface

(17)

in order to solve for . Then

(18)
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Fig. 2. Values used to find scalar potential on an interface.

which is equivalent to using the average value of the per-
mittivity at the interface. Since this microstrip is parallel to
the -plane, it is prudent to place the metal surface at a
layer where the nodes of and are located. The node
locations of , , and the metal boundaries, are shown in
Fig. 3, where the 0’s indication the location of. The node
distribution on the layer at above or below the metal
layer is shown in Fig. 4, where the 0’s are for the magnetic
scalar potentials if the magnetic current or slot excitation are
used. The equation on the metal surface is then

(19)

(20)

The metal edges and corners are placed in the meshed region in
Fig. 3, where the singularities of the edge and corner electric
fields are nicely avoided.

Fig. 3. Locations of the vector potential components in relation to metal
boundary.

Fig. 4. Locations of the vector potential components one half division above
the metal surface.

The continuity of the tangential magnetic field at the inter-
face is obtained by the integral

(21)

Let the loop integral be on the - and -plane, respectively,
to obtain

(22)

and

(23)
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where

(24)

An interesting case is the equation for just above and
below the interface. Even though they are interior nodes, they
are only a half discretization away from the interface, and the
central FD equation would require a node in the other medium.
The integral of (21) in the -plane just above and below the
interface gives the following formulas, respectively,

(25)

and

(26)

These pseudo-interior equations are functions of the medium
of the other side.

III. I MPLEMENTATION OF THE MEI METHOD

A. Linear Equations

The MEI method to terminate the mesh, or to write local
linear equations at the mesh boundary is described. Fig. 5
shows three types of node configuration for a cubic mesh
enclosure. Therefore, the mesh boundary equations are

or (27)

where for corner, edge, and surface nodes, respec-
tively. Note that the mesh boundary equations are derived for
each wave equation of the components of, so there is no
coupling between them in (27). There should be a different
set of for every .

The measuring functions are

(28)

Fig. 5. Geometry of boundary nodes of a 3-D mesh.

The is the dyadic Green’s function for the
ground plane with dielectric substrate,is the surface of the
microstrip or antenna, and is the metron on .

For each , the values of may be
inserted into (27) generating a linear system which may be
used to find the MEI coefficients . As in the static case
described earlier, the value is arbitrary, set to

(29)

This is done for each node on the mesh surface, edge or
corner, where the FD equations fail.

B. The Metrons

In the case of a 2-D problem the choice of a metron set,
though arbitrary, is quite simple, such as the lowest order terms
of any orthogonal set of functions. In a 3-D case, where a
2-D surface may assume quite complicated shapes, an intuitive
selection of metrons may not be available. To relieve the code
developer the burden of choosing particular metron sets, the
authors have decided to use Hertzian dipoles at the nodes as
metrons. One -directed Hertzian dipole is placed at one node
location of as a metron for . Therefore, we shall have

metrons, and is the number of node points of on the
metal surface where . A least square fit is used to find
the coefficients in (27). Surprisingly, all equations are
very nearly satisfied. Maximum residues in (27) are about 1%
for every node in the mesh and for every measuring function.
The least-square procedure is very much like an integration
process in (28). The rule is that every node point of on
the metal should be included.

C. The Green’s Functions

The Green’s function in (28) is a dyadic of the form

(30)

The components in (30) are given in terms of Sommerfeld’s
integrals. They are the solutions to the Helmholtz equation
in regions of a grounded planar dielectric substrate shown
in Fig. 6. An excellent reference to those is [18]. The su-
perscript in (30) denotes the direction of the source and
the subscript denotes that of the potential. The integrals are
shown in (31)–(33) at the bottom of the following page,
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Fig. 6. Geometry for finding the Sommerfeld integrals of a grounded di-
electric substrate.

where , and
. The symmetry of the

media gives the following relations:

(34)

The integrations of the Green’s functions are time consuming
because the integrands are slowly decaying oscillating func-
tions. Techniques for performing such integrations are outlined
in [18].

IV. NUMERICAL RESULTS

Using the above procedures, the FD equations are developed
and truncated specifically for planar-microstrip-type problems.
All one needs to do is to use a sparse matrix subroutine to solve
for the vector potentials, from which the fields and induced
current densities can be obtained. The advantage offered by the
MEI procedure is its capability to truncate the mesh very close
to the object surface—in this cases, the microstrip itself. In the
horizontal direction the mesh is terminated only two discretiza-
tion steps away from the edges of the metal strip. In the vertical
direction, the mesh is terminated two discretization steps above
the strip and three discretization steps below the strip.

A. Infinite Structures

A microstrip line extending to infinity is a basic problem
for numerical computation because it will tell us how well the

Fig. 7. Mesh geometry of an infinite line using MEI.

method can model transmission structures. The geometry for
a continuous line is shown in Fig. 7. The FD equation inside
the mesh, and the MEI equations at most of the edges of the
mesh, have been derived in the previous section. However,
something else should be done at the input and output planes.
Since we are looking for a wave which propagates with a
-dependence of the form , this condition can be

enforced at the output plane, by writing

(35)

The input plane now forms the excitation for the problem.
An iterative method may be used to derive the excitation. The
first step is to specify on the metal and zero off the
metal at the input plane. The system of equations is solved.
The values calculated at the output plane may be used as the
new excitation values at the input plane and the calculation is
repeated. Because the higher order modes, which are excited,
decay in the -direction, the solution should stabilize to a
dominant mode after a few iterations, which it does. Note
that the MEI coefficients, or all the elements of the matrix,
remain unchanged at each iteration.

Another issue in modeling an infinite line is the effect of the
presence of the metrons outside the mesh. Metrons are placed
outside of the mesh where the effect is seen to be negligible to
compare to the effect of closer current effects. In other words,
the metal effect is deemed to continue to some distance away

(31)

(32)

(33)
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Fig. 8. Current along an infinite suspended strip.H = 1 mm, frequency
= 12 GHz.

from each side of the mesh, and Hertzian dipole metrons are
place at each node on the metal. Then, the MEI coefficients
are found by a least-square-fitting method. Through numerical
experimentation, it has been found that placing metrons out to
a distance equal to about , where is the thickness of the
substrate, produces good results. The magnitude and phase of
the total longitudinal current along a suspended strip is shown
in Fig. 8. A tiny standing wave is seen, representing the size
of the error in the calculation.

For a microstrip where the substrate is not air, the propa-
gation constant is unknown. However, it may be found by the
same iterative process used to find the excitation values on
the input plane. First, a starting value may be found from
the quasi-static approximation, and the initial excitation of
as used earlier. Then, after each solution, a new propagation
constant is calculated from the slope of the phase along the
transmission line. The new value of along with the new
excitation values are inserted into the problem and resolved.
The process is repeated until the propagation approaches a
unimodal form

(36)

The MEI coefficients stay the same in each iteration, but the
equations at the output plane (35) do change because of the
changing . In addition, it is found that the best results are
obtained when the mesh is extended all the way to the ground
plane.

Results using this approach are shown in Fig. 9. The lon-
gitudinal current densities, magnitude, and phase of the same
line of Fig. 7 with a dielectric layer of at 12 GHz are
shown in Fig. 10. For this inhomogeneous case, the solution
is not quite as accurate as in the homogeneous case. The
magnitude of the current decreases as it propagates, in other
words, the propagation constant has a small imaginary part.
This error appears due to numerical inaccuracies in the FD and
MEI equations. It becomes smaller as the mesh size is reduced.
The same numerical phenomenon has been observed when the
finite-difference time-domain (FDTD) method is used [21].
Actually using this 3-D approach to calculate what is, in fact,
a 2-D problem is overkill. A more common method to solve

Fig. 9. Effective dielectric constant for microstrip lines. Relative dielectric
permittivity is 12.9, and substrate thickness is 1 mm,"e� = (�=k0)

2. The
dotted line is from [20].

Fig. 10. Current along an infinite microstrip line. Frequency is 12 GHz,
substrate is the same as in Fig. 17, andw=H = 1:0.

Fig. 11. Mesh geometry of an open-end microstrip.W = 6h, L = 50h,
H = 6:5h, 0:01 � k0h < 0:06, whereh is the mesh spacing (L not to scale).

for the propagation constant for an infinite line is the spectral-
domain method [22]. The 3-D approach is used to test how
well the MEI method models infinite structures.

B. Microstrip Discontinuities

Open End: The simplest microwave discontinuity is the
open end, shown in Fig. 11. The excitation used at the input
plane is the potential of an infinite line. Since higher order
modes are excited at the open end, the input plane should be
placed some distance away from the open end. Experience
indicates that a distance of about works well.

In order to extract the reflection coefficient, the current on
the line must be decomposed into the sum of a forward and
a reflected wave

(37)
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Fig. 12. Lost power andS11 of the microstrip open end. The relative
permittivity is 9.9, substrate thickness is 0.06 cm, strip width is 0.06 cm.
The solid lines are results using the MEI, and the points are from [23].

The value of is found from the infinite line problem with the
same mesh size. The magnitude of and may be found
by equating the calculated current on the line to the form of
(37). The reflection coefficient is

(38)

Results for the reflection coefficient are given in Fig. 12. The
top view of the mesh is shown in Fig. 11 except thatis not in
scale. The mesh extends above and below the interface.
The calculated results of Fig. 12 agree well with those of [30].

Microstrip Bend: The geometry and mesh of a microstrip
bend is shown in Fig. 13. The mesh is extended toabove
and below the interface. Metron currents are placed up to
a distance of 100 mesh units from the bend. Good agreement
of the -parameters with earlier calculations [30] is shown in
Fig. 14. The power radiated is found from

(39)

The actual magnitude of the current density over the strip is
shown in Fig. 15. The standing wave at the input side is clearly
seen, as is the characteristic profile of the current densities
traversing the microstrip.

Microstrip Stub: Another example in the literature is the
analysis of a microstrip stub, shown in Fig. 16. The mesh
is shown in scale except for the length along the strip. The
mesh actually extends 50 points in each direction. In the
vertical direction, the mesh extends above and below

Fig. 13. Mesh geometry of a microstrip bend.W = 4h, L = 50h,
H = 4:5h, 0:01 � k0h � 0:08, whereh is the mesh spacing.

Fig. 14. S-parameters of the microstrip bend. Relative permittivity of sub-
strate is 9.9. Strip width and substrate thickness both are 0.06 cm. Solid line
is by MEI, points are from [23].

Fig. 15. Current densities on the microstrip bend of Fig. 13. The frequency
is 17 GHz.

the interface. The current densities on the stub are shown
in Fig. 17. The results contain all the features one would
expect from the current densities in a microstrip, such as high-
longitudinal-current densities along the metal edge, standing
wave on the input side of the strip, small transverse current,
etc. Fig. 18 shows the-parameters and total scattered power.
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Fig. 16. Mesh geometry of a microstrip stub. Mesh is shown to scale, except
for the length along the input and output. The mesh actually extends 50 points
in each direction.

Fig. 17. Current on a stub discontinuity. Frequency is 10.25 GHz.

Fig. 18. S-parameters of the microstrip stub of Fig. 16."R = 10:65,
L = 2:8 mm,W = 1:4 mm,H = 1:27 mm. Dashed line is from [24].

One less the scattered power should be the power radiated. The
comparison of this calculation and that of the prior work by
Jackson1 [24] is shown in Fig. 18. Results similar to Jackson’s
were reported in [25] using the MoM.

1Despite the title of the paper, the calculations in Jackson’s paper are done
by the MoM.

V. CONCLUSION

The authors have shown that the MEI method can be
applied to 3-D planar microstrip structures. This method has
successfully truncated the FD mesh very close to the microstrip
surface without disturbing the sparsity of the matrix so that
the size of the problem is reduced to within the limits of a
personal computer. This paper is just a demonstration of the
validity of the MEI method. The real value of the MEI method
is its potential of tackling large problems such as filters,
couplers, and antenna arrays. Improvements of the existing
codes regarding more complex geometry and speeding up of
the Sommerfeld’s integrals have to be done before one can
economically solve large problems.

The MEI method has a big advantage in its simplicity. It
actually simplifies the mesh generation for FD/FE problems
because the mesh does not need to extend very far from the
body surface. In this work, a variety of microstrip discontinuity
problems with the same code have been analyzed. Little setup
time is needed to switch from one to the other. All that must
be done to specify the problem is to describe the location of
the metal nodes and the form of excitation.
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